StackFuel Friends – Empfiehl StackFuel und erhalte 250 €!
Modul

Data Analyst.

Weiterbildung für die Jobrolle als Data Analyst
Illustration of a smart card under a magnifying glass analyzing data, with a pulse graph background.
Modulbeschreibung
Vollzeit/Teilzeit
|
Deutsch, Englisch

Die zertifizierte Data Analyst Weiterbildung – Fokus Python befähigt Dich dazu, Daten selbständig zu reinigen, aufzubereiten, zu visualisieren und unternehmensrelevante Vorhersagen zu tätigen.

Du erlangst online stark nachgefragte Fähigkeiten in der Programmiersprache Python, um Dich mit erfolgreichem Abschluss des Karrierepfades für die Jobrolle als Data Analyst oder eine andere analytische Jobrolle wie dem Business Intelligence Analyst oder Financial Analyst zu qualifizieren.

In diesem Modul lernst Du:
Basic Python Skills
Data Analytics with Python
Basic Statistik Skills
  • Datenquellen erschließen und filtern
  • Daten fachgerecht zusammenführen und aufbereiten
  • Selbstständig erweiterte Datenanalysen mit deskriptiver
    Statistik durchführen
  • Einfache Skripte in der Programmiersprache Python schreiben
  • Einfache Vorhersagen treffen
  • Best Practices für die effektive Datenvisualisierung
Inhaltsübersicht

1
Python Beginners Guide
toggle

Ziel:
Einführung in die Programmierung mit Python

Beschreibung:
Teilnehmende machen sich mit der interaktiven Lernumgebung– dem Data Lab von StackFuel – und der Programmiersprache Python vertraut.

Kapitel 1 – Python Basics:
Teilnehmende bewegen sich zum ersten Mal im Data Lab und machen sich mit den Grundlagen der Programmierung vertraut. Sie lernen, Zahlen und Texte als Variablen in Python zu speichern und diese als Gruppen in Listen zu bündeln. Die sachgemäße Leseart von Fehlermeldungen rundet das Grundlagenwissen ab.

Kapitel 2 – Programming Basics:
Teilnehmende bauen ihre Programmiergrundlagen weiteraus. Die Anwendung von Funktionen und Methoden sowie von Ablaufkontrollen mithilfe von Bedingungen stehen im Fokus dieses Kapitels.

Kapitel 3 – Loops and Functions:
Das letzte Kapitel des Grundlagenmoduls widmet sich der Ablaufkontrolle unter Verwendung von Schleifen. Teilnehmende erweitern ihren Funktionsumfang durch das Importieren weiterer Python-Pakete und erhalten einen Einblick in die Versionierung von Code mit Git. Mit Abschluss des Kapitels kennen Teilnehmende die wichtigsten Programmierungskonzepte, die für die Arbeit als Data Analyst wichtig sind.

2
Data Analytics with Python
toggle

Ziel:
Eigenständige Sammlung, Analyse und Visualisierung von Daten mit Python

Beschreibung:
Teilnehmende lernen, neue Datenquellen zu erschließen, zu filtern und zusammenzuführen. Sie üben, Unternehmensdaten mit ansprechenden Visualisierungen zielgruppengerecht zugänglich zu machen und selbstständig klassische Datenverarbeitungsprozesse durchzuführen (Daten einlesen, filtern, reinigen verarbeiten und visualisieren).

Kapitel 1 – Data Pipelines (Pandas):
Dieses Kapitel vermittelt die effiziente Nutzung von Pandas – das Standardwerkzeug eines Data Analysts in Python. Teilnehmende lernen, damit Daten in CSV-Dateien einzulesen, zu bereinigen und zu aggregieren.

Kapitel 2 – Data Exploration (Matplotlib):
Teilnehmende üben mit Hilfe von Marketingdaten die Visualisierung verschiedener Datenniveaus. Numerische Daten werden als Histogramme und Streudiagramme dargestellt, während kategorische Daten als Säulen- und Tortendiagramme abgebildet werden.

Kapitel 3 – Predictions (Statistics):
Teilnehmende erlernen anhand von Produktbewertungen statistische Begriffe wie Median und Quartile. Sie identifizieren Ausreißer und erstellen einfache Vorhersagen mit der linearen und logistischen Regression.

Kapitel 4 – Internal Data (SQL):
Teilnehmende lernen, Datenbanken am Beispiel einer Personaldatenbank auszulesen und Standard-SQL-Abfragen zu formulieren.

Kapitel 5 – External Data (API):
Teilnehmende greifen mit Hilfe von Python auf Informationen wie Webseiten und von StackFuel konzipierte APIs im Internet zu.

Kapitel 6 – Advanced Jupyter:
Teilnehmende lernen Jupyter-Funktionalitäten kennen und lösen fortgeschrittene Visualisierungsprobleme wie Live-Updates und Interaktivität im Kontext eines Aktienmarktszenarios.

Kapitel 7 – Exercise Project:
Teilnehmende analysieren ein New-Yorker-Taxidatenset mit über einer Million Fahrten und setzen ihre Python-Fähigkeiten möglichst eigenständig ein, um vorgegebene Fragestellungen zu beantworten.

Kapitel 8 – Final Project:
Teilnehmende analysieren die Kundenabwanderungen eines Telekommunikationsunternehmens. Sie durchlaufen die gesamte Daten-Pipeline selbstständig und beantworten typische Fragestellungen. In einem 1-on1- Feedbackgespräch mit dem Mentorenteam von StackFuel präsentieren sie ihr Projekt

Du möchtest dieses Modul losgelöst vom gesamten Trainingsprogramm und ohne Bildungsgutschein absolvieren? Für Selbstzahlende bieten wir flexible Zahlungs- und Finanzierungsmöglichkeiten an. 
Bitte wende Dich direkt an unser Beratungsteam, um mehr Informationen zu erhalten.

Hast Du noch Fragen?

Finde mit uns Dein Trainingsprogramm und starte Deine Datenkarriere! Buche jetzt eine unverbindliche Beratung.

+6.000 Absolvent:innen
91 % Abschlussquote
AZAV-zertifiziert
FAQ

Unsere Trainings werden von unserem eigenen Team aus Data Scientists und Fachexpert:innen entwickelt und produziert, die Dich als Teilnehmende:n während der Weiterbildung im persönlichen Mentoring betreuen. Dabei setzen wir nicht nur auf realitäts- und praxisnahe Inhalte, sondern sorgen im persönlichen Austausch dafür, dass alle Deine Fragen beantwortet werden und garantieren so Deinen Lernerfolg.

Dank unserem “Learning-by-doing“-Prinzip lernst Du in unserer interaktiven Lernumgebung mit realistischen Datensätzen und echten Business Cases aus der Industrie und bereitest Dich so perfekt auf den erfolgreichen Berufseinstieg in einen Daten-Job vor.

Mit StackFuel setzt Du auf einen Marktführer mit Deutschlands innovativster Lernplattform, um Deine Daten-Skills praxisnah auszubauen. In zertifizierten Trainingsprogrammen lernst Du online, zeitlich flexibel und mit 80 % praktischen Inhalten.

So gelingt Dir der Quereinstieg als Data Analyst oder Data Scientist und Du lernst Daten und Grundlagen künstlicher Intelligenz professionell anzuwenden. Deine neue Datenkarriere beginnt mit Deiner Online-Weiterbildung bei StackFuel.

Daten sind aus unserem (Berufs-)Leben nicht mehr wegzudenken. In fast allen Bereichen helfen Daten Dir dabei, Sachverhalte besser zu verstehen und Entscheidungen präziser treffen zu können. Daten-Skills sind der Schlüssel, um Daten auch richtig verwerten und interpretieren zu können. Auch wenn Du es vielleicht nicht merkst, arbeitest, interagierst und generierst Du jeden Tag Daten.

Diese Daten werden für Unternehmen immer wichtiger und sind die Basis für Entscheidungen und Geschäftsmodelle, was Datenprofis für Unternehmen unglaublich sehr macht.

de_DEGerman