Practice rather than theory: Liudmila's start as a digital analyst

Studies, further training as a data analyst and a successful start as a digital analyst at a leading real estate group. Our alumna Liudmila has made the storybook transition to digital analyst. The focus on practical experience and further education at StackFuel helped her achieve this.

Table of contents

Graphic in the article "Skill Gap Analysis: How Companies Effectively Determine the Training Needs of Their Workforce" shows the StackFuel Data Literacy Assessment (icon image).

Interested in more?

Reading time: 4 min

Liudmila relies on practical experience and scores points with exactly that. In June 2021, she will start her data analyst training with a focus on the Python programming language with the "Women in Data" scholarship and will start as a digital analyst at a leading real estate portal shortly after graduation. She says it's never too late to retrain and start a new career. If you focus on practice, you'll be ahead of the game. Find out why in Part 1 of this two-part interview.

Liudmila's interview

Dear Liudmila, you made an incredible career change and successfully started your job as a Digital Analyst last year. How did you manage that?

Thank you very much. When I moved to Germany in 2017, my visa conditions did not allow me to choose another Master's program and I had to continue my previous program from Russia. However, being more of a practitioner than a theorist, I decided to pursue other avenues to achieve my goals. The main triggers were my passion for data and my willingness to be thrown into the deep end.

During the beginning of the Corona period, I started intensive self-study and tackled my first projects. In the beginning, it was not clear to myself where this path would lead me, so I focused on my development and pursued the fascination for the topic of data.

Self-learners tend to be self-critical and often worry that their skills and knowledge may not be enough. Yet this is not necessary at all. Even after graduating from university, we first enter the working world empty-handed. The theory often has little to do with the real job requirements. That's why internships and student jobs are so important for gaining real-world experience. I applied for various jobs while I was still studying and that's how I got my current job.

What role did the "Women in Data" scholarship and the Data Analyst certificate play in your career transition?

The "Women in Data" scholarship from StackFuel and Telefónica Germany came into my life at an absolutely right time and helped me a lot to make the breakthrough. I became aware of the scholarship at the time because it was specifically aimed at women/migrants/career changers like me. I especially liked the fact that the Data Analyst training at StackFuel offered me the opportunity to work with real industry data and tackle realistic data analytics business scenarios because of its practical relevance.

Over the course of the five months of training, I went through every step of a typical data analyst pipeline and learned how to use the necessary Python modules. For me, it was like an internship of sorts. The topics and tasks were so close to reality that I could be sure that I would not only receive a vague theoretical knowledge, but would be able to deal with real business problems upon completion.

In the final project, I was able to combine my accumulated knowledge and gain data-driven insights from the dataset of a telecommunications company. To help the company execute two major marketing campaigns, I analyzed the causes of high customer churn and identified target cities for campaigns. I was able to predict individual customer behavior to determine which customers needed to be targeted before they would unsubscribe.

Looking at my finished final project, I was really surprised at how much I learned during my time in Data Analyst continuing education. Furthering my education at StackFuel also gave me the opportunity to meet other women who were interested in getting started in the tech industry. Their amazing stories inspired me to keep going.

Become a Data Analyst like Liudmila - online and part-time in just 3 months. Discover our Data Analyst continuing education and subsidized continuing education with an education voucher.

What three qualities excite you most about working with data?

First, data accompanies us in absolutely every aspect of life. The ability to see developments, truths, and trends behind simple numbers can help us not only improve existing approaches, but also create something entirely new through improved decision-making.

Working with data can be compared to an onion: You have to examine layer by layer. This is called a top-down approach, where you first look at a primitive level and then dig deeper to discover patterns and read information from them.

Second, working with data is inseparable from working with people. Each analyst must have a thorough understanding of the industry and the company in which he or she works. To do this, you have to meet and communicate with various specialists and departments. To do this, we have to present the results of our analyses to a non-technical audience and make them understandable.

For data to inspire action and change, you have to tell the story hidden within it. As a culture, we are made to tell and keep stories. Of course, it is necessary not to lose sight of the technical side and not to adapt the data to the story, but the story to the data.

Last but not least, data is inextricably linked to business problems and their solutions. When working with data, what matters most is the business vision, that is, the ability to add value to the business. It doesn't help to dig into data and create incredibly complex models if the specifics of the business are not understood and considered. It's about finding the most important questions for the business and answers to them. And these are very individual. This does not always require particularly sophisticated analyses.

We thank Liudmila for the interview and for taking the time to speak with us. If you want to read more from Liudmila, don't miss part 2 of her interview on lifelong learning, how she built on her Data Analyst training and women in the data industry.

For articles, interviews, and more free content on data science, data management, and online courses like the Data Analyst continuing education with education voucher, follow StackFuel on Facebook, Instagram, LinkedIn, and XING.

As a true Berliner, Laura quickly joined the creative and start-up scene. After studying Media and Communications Management at Mediadesign - University of Applied Sciences, Laura was already working as an editor at IQPC, where she was responsible for the Finance, Tech, Data and AI sections and interviewed well-known industry pioneers at conventions. At StackFuel, Laura is steadily expanding the Content Lab - our diverse offering of free content, webinars, and publications.

Share this article!

Most popular articles

data thinking
Data Knowledge

Data Thinking: With innovative framework to data-based solutions

Did you know that 60% of data projects don't make it past the testing and experimentation phase? The reason for this is that there is usually no common data tool or data strategy. This is where Data Thinking comes in: We show you how to save your company from the concept of planlessness and use data as an innovation driver.

Read more
Blog post data literacy data skills for business
Data Skills

Data Literacy: How important are data skills for companies and society?

Data literacy seems like one of many business buzzwords, but is probably one of the most important concepts of the decade. Data literacy has the potential to divide society and companies or to become a decisive success factor in a world driven by data. Can companies and employees manage the balancing act between successful digitization and the requirements it demands?

Read more